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Abstract—In this paper we propose a saturated nonlinear
PID regulator for solving the problem of global regulation in
robot manipulators with bounded torques. An approach based
on interconnected passive systems is used for analyzing the
global asymptotic stability. To this end, we use a passivity
theorem which is an adaptation of a passivity theorem given
in Khalil [21]. Such a theorem deals with asymptotic stability
of the equilibrium of an unforced interconnected system in
which the feedforward system is state strictly passive and the
feedback system is passive and equilibrium–state observable.

I. INTRODUCTION
Saturation is one of the most commonly encountered

nonlinearities in robot control systems. This phenomenon
is present when the actuators are driven by sufficiently
large control signals. If this physical constraint is not
considered in the controller design, it may lead to a lack
of stability guarantee. Some works have been reported to
solve this problem, [1]–[8]. On the other hand, some global
nonlinear PID regulators, which are based on Lyapunov
and passivity theory, has been reported in [9]–[12], how-
ever, they do not take into account the effects of actuators
saturation. Recently, two saturated PID controllers have
been reported: a semiglobal saturated linear PID control
[13] and a global saturated nonlinear PID control [14].

In this paper we introduce a new global saturated
nonlinear PID controller, which has a simpler structure
than that presented in [14]. It is demonstrated that
the proposed saturated nonlinear PID regulator, can be
considered as a passivity based regulator that allows
to see the closed loop system as a feedback connection
between two passive systems. With the end of proving the
asymptotic stability of the proposed controller, we present
a passivity theorem which is an adaptation, for asymptotic
stability purposes, of a passivity theorem given in Khalil
[21]. Such a theorem deals with the asymptotic stability
of the equilibrium of an unforced interconnected system
in which the feedforward system is state strictly passive,
and the feedback system is passive and observable in the
equilibrium–state.

Throughout this paper, we use the notation λm{A} and
λM{A} to indicate the smallest and largest eigenvalues,

respectively, of a symmetric positive definite bounded
matrix A(x), for any x ∈ IRn. The norm of vector x
is defined as ‖x‖ =

√
xT x and that of matrix A is defined

as the corresponding induced norm ‖A‖ =
√
λM{ATA}.

Ln
2 and Ln

2e denote the space of n–dimensional square
integrable functions and its extension, respectively.

II. DYNAMICS OF RIGID ROBOTS AND CONTROL
PROBLEM FORMULATION

The dynamics of a serial n-link rigid robot, including
the effect of viscous friction, can be written as [15]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = τ (1)

where q is the n × 1 vector of joint displacements, q̇ is
the n × 1 vector of joint velocities, τ is the n× 1 vector
of applied torques, M(q) is the n× n symmetric positive
definite manipulator inertia matrix, C(q, q̇) is the n × n
matrix of centripetal and Coriolis torques, Fv is the n×n
diagonal matrix of viscous friction coefficients fvi for i =
1, 2, . . . , n, and g(q) is the n × 1 vector of gravitational
torques obtained as the gradient of the robot potential
energy U(q), i.e.

g(q) =
∂U(q)
∂q

. (2)

We assume that the links are jointed together with
revolute joints.

A. Properties of the Robot Dynamics

Three important properties of dynamics (1) are the
following:

Property 1. [16] The matrix C(q, q̇) and the time deriva-
tive Ṁ(q) of the inertia matrix satisfy:

q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ IRn.

�
Property 2. [17]. The gravitational torque vector g(q) is
bounded for all q ∈ IRn. This means that there exist finite
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constants ḡi ≥ 0 such that

sup
q∈IRn

|gi(q)| ≤ ḡi i = 1, · · · , n. (3)

where gi(q) stands for the elements of g(q). Equivalently,
there exists a constant k′ such that

‖g(q)‖ ≤ k′ for all q ∈ IRn.

Furthermore there exists a positive constant kg such that

‖g(x) − g(y)‖ ≤ kg‖x− y‖.

for all x,y ∈ IRn. �
Property 3. In relation with the dynamics model (1). The
operator

HR : Ln
2e → Ln

2e

: τ 7→ q̇

is output strictly passive [18],[19].

B. Problem Formulation

Consider the robot dynamic model (1). Assume that
each joint actuator is able to supply a known maximum
torque τmax

i so that:

|τi| ≤ τmax
i , i = 1, · · · , n (4)

where τi stands for the i–entry of vector τ . We also assume
that the maximum torque τmax

i of each actuator satisfies
the following condition

τmax
i > ḡi, (5)

where ḡi was defined in Property 2. This assumption
means that the robot actuators are able to supply torques
in order to hold the robot at rest for all desired joint
position qd ∈ IRn.

The control problem is to design a controller to compute
the torque τ ∈ IRn applied to the joints, which satisfies the
constraints (4), such that, the robot joint displacements
q tend asymptotically toward the constant desired joint
displacements qd.

III. PASSIVITY DEFINITIONS

Consider dynamical systems represented by

ẋ = f (x,u) (6)
y = h(x,u) (7)

where u ∈ IRn, y ∈ IRn, x ∈ IRm, f(x∗,0) = 0,
h(x∗,0) = 0, and x∗ is the equilibrium point of (6).
Moreover f , h are supposed sufficiently smooth such
that the system is well–defined, i.e., ∀ u ∈ Ln

2e and
x(0) ∈ IRm we have that the solution x(·) is unique
and y ∈ Ln

2e. The following definitions 1 and 2, have
been adequate (for non–zero equilibrium) from [21].

�
Definition 1. The system (6)–(7) is said to be passive if

there exists a continuously differentiable positive semidef-
inite function V (x−x∗) (called the storage function) such
that

uT y ≥ V̇ (x − x∗) + ε‖u‖2 + δ‖y‖2 + ρψ(x − x∗) (8)

where ε, δ, and ρ are nonnegative constants, and ψ(x −
x∗) : IRm → IR is a positive definite function of x − x∗.
The term ρψ(x − x∗) is called the state dissipation rate.
Furthermore, the system is said to be: lossless if (8) is
satisfied with equality and ε = δ = ρ = 0; that is,
uT y = V̇ (x − x∗); input strictly passive if ε > 0 and
δ = ρ = 0; output strictly passive if δ > 0 and ε = ρ = 0;
state strictly passive if ρ > 0 and ε = δ = 0. If more than
one of the constants ε, δ, ρ are positive we combine names.

�
Definition 2. The system (6)–(7) is said to be equilibrium–
state observable if u(t) ≡ 0 and y(t) ≡ 0 ⇒
x(t) ≡ x∗. Equivalently, no solutions of ẋ =
f(x,0) can stay identically in S = {x ∈ IRm :
h(x,0) = 0}, other than the solution x(t) ≡ x∗.

�
Definition 3. F(m, ε,x) with 1 ≥ m > 0, ε > 0 and x ∈
IRn denotes the set of all continuous differentiable increas-
ing functions f(x) = [ f(x1) f(x2) · · · f(xn) ]T such
that

• |x| ≥ |f(x)| ≥ m|x|, ∀x ∈ IR : |x| < ε
• ε ≥ |f(x)| ≥ mε, ∀x ∈ IR : |x| ≥ ε

• 1 ≥ df(x)
dx ≥ 0, ∀x ∈ IR

�
Definition 4. The hard saturation function SAT(x; k) ∈
IRn is defined by

SAT(x; k) =




SAT(x1; k1)
SAT(x2; k2)

...
SAT(xn; kn)


 , x =




x1

x2
...
xn


 , k =




k1

k2
...
kn




where ki is the i–th saturation limit, and

SAT(xi; ki) =





xi if |xi| ≤ ki

ki if xi > ki

−ki if xi < −ki

for i = 1, 2, . . . n.

Property 4. The integral of a hard saturation function∫ x

b [SAT(ξ; k)− b] dξ is a positive definite function with an
unique and global minimum at x = b, with |b| < k.

IV. SATURATED NONLINEAR PID GLOBAL
REGULATOR

In this section we present a new saturated nonlinear
PID controller to solve the set-point control problem of
robot manipulators with actuator torque constraints.

A. Main Result

The proposed control law is given by

τ = KpSAT (q̃; τ p) −KvSAT (q̇; τ v) +KiSAT(w; τw)
(9)
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with

w =
∫ t

0

(αsat(q̃(σ)) − q̇) dσ

where τ p, τ v and τ w are the respective vectors of
saturation limits satisfying

kpiτpi ≤ τmax
pi

kviτvi ≤ τmax
vi

kiiτwi ≤ τmax
wi

and τmax
i ≥ τmax

pi
+ τmax

vi
+ τmax

wi
≥ gi, for i = 1, 2, . . . n.

and Kp, Kv and Ki are n × n diagonal positive definite
matrices whose element are kpi , kvi , kii respectively
with i = 1, 2...n, q̃ = qd − q denotes the position error
vector, sat(q̃) was defined in Definition 3, α is a small
positive constant suitably selected. SAT(q̃; τ p) ∈ IRn,
SAT(q̇; τ v) ∈ IRn and SAT(w; τ w) ∈ IRn are the
proportional, derivative and integral hard saturation
functions respectively defined in Definition 4. The closed
loop system is shown in the Figure 1.

Fig. 1. Closed loop system

For analysis purpose, the control law (9), can be
written as τ = KpSAT(q̃) + g(qd) + τ ′ where τ ′ =
−KvSAT(q̇) + τ ′′ and τ ′′ = KiSAT(w) − g(qd) (for
cumbersome notation reasons, henceforth, we omit the
saturation limit parameters). This structure of the control
law, allow us, to represent the closed loop system as an
unforced interconnected system, (see Figure 2).
In the next paragraphs we analyze the stability of the

equilibrium of the closed loop system formed by (9) and
(1), which is given by

d

dt




q̃

q̇

w


 =




−q̇

M−1 [KpSAT(q̃) −KvSAT(q̇)
+KiSAT(w) − F v q̇ − C(q, q̇)q̇ − g(q)]

αsat(q̃) − q̇




(10)
which is an autonomous differential equation whose unique
equilibrium is:

[
q̃T q̇T wT

]T
=

[
0 0 K−1

i g(qd)
]T

,
provided that λm{Ki} > maxiḡi. Such an analysis is car-
ried out using passivity theory of interconnected systems.

Fig. 2. Feedback System

Now, we are in position to introduce some propositions
that will allow us to conclude asymptotic stability of the
closed loop system (10).
Proposition 1. Robot dynamics (1) in closed-loop with

τ = KpSAT(q̃) −KvSAT(q̇) + g(qd) + τ ′′ (11)

is state strictly passive (see Figure 2), from the input
torque τ ′′ to the output −ẇ = (q̇−α sat(q̃)), it is to say,

(q̇ − α sat(q̃))T τ ′′ ≥ V̇1b(q̇, q̃) + ϕ(q̇, q̃), (12)

with the storage function given by

V1b(q̇, q̃) =
1
2
q̇TM(q)q̇ − α sat(q̃)TM(q)q̇ + U(q)

−U(qd) +
n∑

i=1

kpi

∫ q̃i

0

SAT(ξi) dξi

+g(qd)
T
q̃ +

n∑

i=1

α

∫ q̃i

0

fvisat(ξi) dξi,(13)

where the term
∑n

i=1 α
∫ q̃

0 fvisat(ξi) dξi is related with
the dissipated energy by the viscous friction torque, and
α sat(q̃)M(q)q̇ is a cross term which depends on position
error and velocity. The state dissipation rate is given by:

−ϕ(q̇, q̃) =

−q̇TKvSAT(q̇) − q̇TF v(q̇) − α ˙sat(q̃)TM(q)q̇
−αsat(q̃)TC(q, q̇)T q̇ + αsat(q̃)TKvSAT(q̇)
−αsat(q̃T )[g(qd) − g(q)] − αsat(q̃T )KpSAT(q̃).

Proof. The system (1) in closed-loop with the control law
(11) is given by (see Figure 2)

d

dt

[
q̃
q̇

]
=

[
−q̇

M−1 [KpSAT(q̃) −KvSAT(q̇) + ν]

]
(14)
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+
[

0
M−1τ ′′

]

where ν = g(qd) − F vq̇ − C(q, q̇)q̇ − g(q). By using the
Property 4 and the procedure given in [22], it is possible
to determine that the storage function V1b(q̇, q̃) is positive
definite and radially unbounded. By employing Property
1 the time derivative of the storage function (13) along
the trajectories of the closed loop (14) results in

V̇1b(q̇(t), q̃(t)) = (q̇ − α sat(q̃))T τ ′′ − ϕ(q̇(t), q̃(t))

This, shows the state strict passivity of τ ′′ to the output
(q̇ − α sat(q̃)), provided that ϕ(q̇, q̃) be positive definite.

Right a way we will prove that the function ϕ(q̇, q̃) is
positive definite. By using the next inequalities:

−q̇TKvSAT(q̇) ≤ −λm{Kv} ‖SAT(q̇)‖2

−q̇TF vq̇ ≤ −λm{F v} ‖q̇‖2

−α ˙sat(q̃)
T
M(q)q̇ ≤ αλM{M} ‖q̇‖2

−αsat(q̃)TC(q, q̇)T q̇ ≤ αkc1

√
n ‖q̇‖2

αsat(q̃)TKvSAT(q̇) ≤ αλM{Kv} ‖sat(q̃)‖
×‖SAT(q̇)‖ (15)

−αsat(q̃)T [g(qd) − g(q)] ≤ αkh2 ‖sat(q̃)‖2

−sat(q̃)TKpSAT(q̃) ≤ −αλm{Kp} ‖sat(q̃)‖2

with kh2 given in [23] as

kh2 =
2k′

tanh( 2k′

kg
)

—for the case when sat(·) = tanh(·)—, we obtain the next
expression

−ϕ(q̇, q̃) ≤ −
[
λm{Fv} − α(λM{M}+

√
nkc1)

]
‖q̇‖2

−α
[

‖sat(q̃)‖
‖SAT(q̇)‖

]T

Q

[
‖sat(q̃)‖
‖SAT(q̇)‖

]

where

Q =
[
λm{Kp} − kh2

λM{Kv}
2

λM{Kv}
2

λm{Kv}
α

]
,

which will be positive definite if:

λm{Fv}
λM{M}+

√
nkc1

> α. (16)

λm{Kp} > kh2 (17)

4[λm{Kp} − kh2 ]λm{Kv}
λ2

M{Kv}
> α. (18)

Then ϕ(q̇, q̃) > 0 will be positive definite, provided that
(16), (17) and (18), be satisfied. This completes the proof.
♦

Proposition 2. The system (see H2 in Figure 2)

ẇ = α sat(q̃) − q̇

z = [−KiSAT(w) + g(qd)]

is passive from the input q̇ − α sat(q̃) to the output z
with a radially unbounded non negative storage function
given by

V2(w −Ki
−1g(qd)) =

n∑

i=1

kii

∫ wi

kii
−1gi(qd

)

[SAT(ξi) − kii
−1gi(qd)] dξi, (19)

which has an unique and global minimum at w =
K−1

i g(qd) —provided that λmin{Ki} > maxi ḡi—. That
means: ∫ T

0

(q̇ − α sat(q̃))T z dt ≥ −V2(0) (20)

Proof. By using the Property 4 it is possible to determine
that the storage function V2 is non negative with a min-
imum point in w∗ = Ki

−1g(qd) if λmin{Ki} > maxi ḡi.
The time derivative of the storage function (19) results in

V̇2 = [−KiSAT(w) + g(qd)]
T [q̇ − α sat(q̃)]

= zT (−ẇ). (21)

By integrating from 0 a T , in a direct form we have (20).
This shows the passivity from −ẇ = (q̇−α sat(q̃)) to the
output z.

Right a way, we present a theorem that allows to
conclude global asymptotic stability for the equilibrium of
an unforced feedback system, which is composed by the
feedback interconnection of a state strictly passive system
with a passive system. ♦

Fig. 3. Feedback connection

Theorem 1. Consider the feedback system of Figure 3
where H1 and H2 are dynamical systems of the form

ẋi = f i(xi, ei)
yi = hi(xi, ei)

for i = 1, 2, where f i : IRmi × IRn → IRmi and hi : IRmi ×
IRn → IRn are supposed sufficiently smooth such that the
system is well–defined. Also we assume f 1(0, e1) = 0 ⇒
e1 = 0, f2(x2

∗,0) = 0, h1(0,0) = 0. and h2(x2
∗,0) = 0.

The system has the same number of inputs and outputs.
Suppose the feedback system has a well–defined state–
space model

ẋ = f(x,u) (22)
y = h(x,u)
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where
x =

[
x1

x2

]
, u =

[
u1

u2

]
,y =

[
y1

y2

]

f and h are sufficiently smooth, f(x∗,0) = 0, and
h(x∗,0) = 0. Let H1 be a state strictly passive system
with a positive definite storage function V1(x1) and
state dissipation rate ρ1ψ1(x1) and H2 be a passive and
equilibrium–state observable system with a non negative
storage function V2(x2 − x∗

2) with a unique minimum in
x2

∗; that is,

eT
1 y1 ≥ V̇1(x1) + ρ1ψ1(x1)

eT
2 y2 ≥ V̇2(x2 − x∗

2)

Then the equilibrium x∗ of

ẋ = f(x,0) (23)

is asymptotically stable. If V1(x1) and V2(x2 − x∗
2) are

radially unbounded then the equilibrium of (23) will be
globally asymptotically stable.
Proof. Take u1 = u2 = 0. In this case e1 = −y2 and
e2 = y1. Using V (x − x∗) = V1(x1) + V2(x2 − x∗

2) as a
Lyapunov function candidate for the closed–loop system,
we have

V̇ (x − x∗) = V̇1(x1) + V̇2(x2 − x∗
2)

≤ eT
1 y1 − ρ1ψ1(x1) + eT

2 y2

= −ρ1ψ1(x1) ≤ 0,

which shows that the equilibrium x∗ of the closed-loop
system is stable. To prove asymptotic stability we use the
LaSalle’s invariance principle and the equilibrium–state
observability of the system H2. It remains to demonstrate
that x = x∗ is the largest invariant set in Ω = {x ∈
IRm1+m2 : V̇ (x − x∗) = 0}. To this end, in the search of
the largest invariant set, we have to show that V̇ (x−x∗) ≡
0 ⇒ x∗ ≡ 0 ∈ IR2n. From this we have that V̇ (x − x∗) =
0 ⇒ 0 ≤ −ρ1ψ1(x1) ≤ 0 ⇒ −ρ1ψ1(x1) = 0. Besides

ρ1 > 0 ⇒ ψ1(x1) ≡ 0 ⇒ x1 ≡ 0.

Now, as x1 ≡ 0 ⇒ ẋ1 = f1(x1, e1) ≡ 0 and in agreement
with the assumption about f 1(·, ·) in the sense that
f1(0, e1) = 0 ⇒ e1 = 0, we have e1 ≡ 0 ⇒ y2 ≡ 0.
Also x1 ≡ 0, e1 ≡ 0 ⇒ y1 ≡ 0 (owing to assumption
h1(0,0) = 0). Finally, y1 ≡ 0 ⇒ e2 ≡ 0, and

e2 ≡ 0 and y2 ≡ 0 ⇒ x2 ≡ x∗

in agreement with the equilibrium–state observability of
H2. This shows that the largest invariant set in Ω is
the equilibrium, x∗ =

[
x1

T x2
∗T

]
hence, by using

the Krasovskii–LaSalle’s theorem, we conclude asymptotic
stability of the equilibrium of the unforced closed-loop
system (23). If V (x) is radially unbounded then the
equilibrium will be globally asymptotically stable.

♦
In relation to Theorem 1 and considering that x1 =[

q̃T q̇T
]T
, x2 = wT , e2 = y1 = −ẇ, y2 =

z, e1 = τ ′′, V1(x) = V1b(q̇, q̃), V2(x2 − x∗
2) = V2(w −

Ki
−1g(qd)), u1 = τ ′′′ = 0, u2 = 0. The closed-loop

system equation (10) leads to (22) (see Figure 2).
By using the Propositions 1, 2 and Theorem 1 we can

prove the following:
Proposition 3. Consider the saturated nonlinear PID
regulator (9) in closed-loop with the robot dynamics
(1). The closed-loop system can be represented by an
interconnected system (see Figure 2), which satisfies the
following conditions

• A1. The system in the forward path defines a state
strictly passive mapping with a radially unbounded
positive definite storage function given by (13), pro-
vided that λmin{Kp} > kh2 .

• A2. The system in the feedback path defines an
equilibrium state observable passive mapping with a
non negative and radially unbounded storage function
given by (19), provided that λmin{Ki} > maxi ḡi.

Besides, the equilibrium
[
q̃T q̇T wT

]T
=[

0 0 K−1
i g(qd)

]T ∈ IR3n of the closed-loop system (10)
is globally asymptotically stable.

Furthermore the applied torques are bounded by |τi| ≤
τmax
i for i = 1, 2, 3...n.

♦

V. SIMULATION RESULTS

Using the SIMNON, we tested our algorithm in the
two revolute jointed robot manipulator used in [24]. The
desired joint positions were chosen as qd1 = 90◦ and qd2 =
60◦. The gain was tuned as Kp = diag{40, 39} [Nm/rad],
Ki = diag{100, 100} [Nm/rad sec] and Kv = diag{12, 12}
[Nm sec/rad]. The maximum torques supplied by the
actuators are τmax

1 = 15 [Nm] and τmax
2 = 4 [Nm]. The

parameters to be used are: λM{M(q)} = 0.361 [kg m2],
λm{M(q)} = 0.011 [kg m2], kg = 23.94 [kg m2/sec2],
kc1 = 0.049 [kg m2], kh2 = 31.43 [Nm], λm{Fv} = 0.1713
and α = 0.397 [sec−1].
The Figure 4 shows how the position errors converge to

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

[degrees]

t [sec]

q̃1

q̃2

Fig. 4. Joint position errors for the saturated PID Control

zero and the Figure 5 shows the torques for a period of six
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τ2

τ1
14

16
[Nm]

2
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6

τmax
1 = 15Nm

τmax
2 = 3.99Nm

Fig. 5. Applied torque using the saturated PID Control

second. The proposed saturated nonlinear PID controller
yields control inputs |τ1| < τmax

1 = 15 [Nm] and |τ2| <
τmax
2 = 4 [Nm].

♦

VI. CONCLUSIONS

In this paper we have proposed a saturated nonlinear
PID regulator to solve the global regulation problem of
robot manipulators with bounded torques.

By using a passivity based approach, we have presented
a global asymptotic stability analysis of the closed loop
system.

It has been proved that the passive structure of the
rigid robot is preserved in closed loop with the saturated
feedback of position and velocity from a new input torque
τ ′′ to the output −ẇ = (q̇ − α sat(q̃)). Besides, the
feedback corresponding to the saturated integral action
defines a passive mapping.

Based on the above reasoning we show that the proposed
saturated nonlinear PID regulator in closed-loop with
the robot manipulator, can be represented as a feedback
system composed by two blocks, in which, the feedforward
system is state strictly passive and the feedback system is
passive and equilibrium–state observable.

Global asymptotic stability of the equilibrium of the
closed-loop system is given in a direct way using a passivity
theorem, which is an adaptation of a passivity theorem
presented in the literature of passive systems.

It is also guaranteed that, regardless of initial condi-
tions, the delivered torques evolve inside prescribed limits.
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[23] R. Kelly, V. Santibañez, “Control de Movimiento de Robots
Manipuladores”, Pearson Prentice Hall. España,(2003).

[24] Campa R., Kelly R., Santibáñez V. “Windows-Based real-time
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